control_sel
constructs a list with all necessary control parameters
for selection model.
Usage
control_sel(
est_method = c("mle", "gee"),
gee_h_fun = 1,
optimizer = c("maxLik", "optim"),
maxlik_method = c("NR", "BFGS", "NM"),
optim_method = c("BFGS", "Nelder-Mead"),
epsilon = 1e-04,
maxit = 500,
trace = FALSE,
penalty = c("SCAD", "lasso", "MCP"),
a_SCAD = 3.7,
a_MCP = 3,
lambda = -1,
lambda_min = 0.001,
nlambda = 50,
nfolds = 10,
print_level = 0,
start_type = c("zero", "mle", "naive"),
nleqslv_method = c("Broyden", "Newton"),
nleqslv_global = c("dbldog", "pwldog", "cline", "qline", "gline", "hook", "none"),
nleqslv_xscalm = c("fixed", "auto"),
dependence = FALSE,
key = NULL
)
Arguments
- est_method
Method of estimation for propensity score model (
"mle"
or"gee"
; default is"mle"
).- gee_h_fun
Smooth function for the generalized estimating equations (GEE) method.
- optimizer
(for the
est_method="mle"
only) optimization function for maximum likelihood estimation.- maxlik_method
(for the
est_method="mle"
only) maximisation method that will be passed tomaxLik::maxLik()
function. Default isNR
.- optim_method
(for the
est_method="mle"
only) maximisation method that will be passed tostats::optim()
function. Default isBFGS
.- epsilon
Tolerance for fitting algorithms by default
1e-6
.- maxit
Maximum number of iterations.
- trace
logical value. If
TRUE
trace steps of the fitting algorithms. Default isFALSE
- penalty
The penalization function used during variables selection.
- a_SCAD
The tuning parameter of the SCAD penalty for selection model. Default is 3.7.
- a_MCP
The tuning parameter of the MCP penalty for selection model. Default is 3.
- lambda
A user-specified value during variable selection model fitting.
- lambda_min
The smallest value for lambda, as a fraction of
lambda.max
. Default is .001.- nlambda
The number of
lambda
values. Default is 50.- nfolds
The number of folds for cross validation. Default is 10.
- print_level
this argument determines the level of printing which is done during the optimization (for propensity score model) process.
- start_type
Type of method for start points for model fitting taking the following values
if
zero
then start is a vector of zeros (default for all methods).if
mle
(forest_method="gee"
only) starting parameters are taken from the result of theest_method="mle"
method.
- nleqslv_method
(for the
est_method="gee"
only) The method that will be passed tonleqslv::nleqslv()
function.- nleqslv_global
(for the
est_method="gee"
only) The global strategy that will be passed tonleqslv::nleqslv()
function.- nleqslv_xscalm
(for the
est_method="gee"
only) The type of x scaling that will be passed tonleqslv::nleqslv()
function.- dependence
logical value (default
TRUE
) informing whether samples overlap (NOT YET IMPLEMENTED, FOR FUTURE DEVELOPMENT).- key
binary key variable allowing to identify the overlap (NOT YET IMPLEMENTED, FOR FUTURE DEVELOPMENT).
Details
Smooth function (gee_h_fun
) for the generalized estimating equations (GEE) method taking the following values
if
1
then h(x, ) = (x, )x,if
2
then h(x, ) = x
See also
nonprob()
– for fitting procedure with non-probability samples.