Skip to contents

The update method for the nonprob class object that allows to re-estimate a given model with changed parameter. This is in particular useful if a user would like to change method or estimate standard errors if they were not estimated in the first place.

Usage

# S3 method for class 'nonprob'
update(object, ..., evaluate = TRUE)

Arguments

object

the nonprob class object

...

arguments passed to the nonprob class object

evaluate

If true evaluate the new call else return the call

Value

returns nonprob object

Author

Maciej Beręsewicz

Examples


data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1,  weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit", se = FALSE
)

ipw_est1
#> A nonprob object
#>  - estimator type: inverse probability weighting
#>  - method: logit (mle)
#>  - auxiliary variables source: survey
#>  - vars selection: false
#>  - variance estimator: analytic
#>  - population size fixed: false
#>  - naive (uncorrected) estimator: 0.6605
#>  - selected estimator: 0.7224 (se=NA, ci=(NA, NA))

update(ipw_est1, se = TRUE)
#> A nonprob object
#>  - estimator type: inverse probability weighting
#>  - method: logit (mle)
#>  - auxiliary variables source: survey
#>  - vars selection: false
#>  - variance estimator: analytic
#>  - population size fixed: false
#>  - naive (uncorrected) estimator: 0.6605
#>  - selected estimator: 0.7224 (se=0.0421, ci=(0.6399, 0.8048))