An S3 method for stats::simulate
to handle singleRStaticCountData
and
singleRfamily
classes.
Usage
# S3 method for class 'singleRStaticCountData'
simulate(object, nsim = 1, seed = NULL, ...)
# S3 method for class 'singleRfamily'
simulate(object, nsim, seed = NULL, eta, truncated = FALSE, ...)
Arguments
- object
an object representing a fitted model.
- nsim
a numeric scalar specifying:
number of response vectors to simulate in
simulate.singleRStaticCountData
, defaults to1L
.number of units to draw in
simulate.singleRfamily
, defaults toNROW(eta)
.
- seed
an object specifying if and how the random number generator should be initialized (‘seeded’).
- ...
additional optional arguments.
- eta
a matrix of linear predictors
- truncated
logical value indicating whether to sample from truncated or full distribution.
Examples
N <- 10000
###gender <- rbinom(N, 1, 0.2)
gender <- rep(0:1, c(8042, 1958))
eta <- -1 + 0.5*gender
counts <- simulate(ztpoisson(), eta = cbind(eta), seed = 1)
df <- data.frame(gender, eta, counts)
df2 <- subset(df, counts > 0)
### check coverage with summary
mod1 <- estimatePopsize(
formula = counts ~ 1 + gender,
data = df2,
model = ztpoisson,
controlMethod = list(silent = TRUE)
)
mod1_sims <- simulate(mod1, nsim=10, seed = 1)
colMeans(mod1_sims)
#> sim_1 sim_2 sim_3 sim_4 sim_5 sim_6 sim_7 sim_8
#> 1.241014 1.259281 1.239246 1.244255 1.226871 1.237773 1.239540 1.234532
#> sim_9 sim_10
#> 1.230701 1.244844
mean(df2$counts)
#> [1] 1.240424