Controls for ANN algorithms used in the package
Usage
controls_ann(
sparse = FALSE,
k_search = 30,
nnd = list(k_build = 30, use_alt_metric = FALSE, init = "tree", n_trees = NULL,
leaf_size = NULL, max_tree_depth = 200, margin = "auto", n_iters = NULL, delta =
0.001, max_candidates = NULL, low_memory = TRUE, n_search_trees = 1,
pruning_degree_multiplier = 1.5, diversify_prob = 1, weight_by_degree = FALSE,
prune_reverse = FALSE, progress = "bar", obs = "R", max_search_fraction = 1, epsilon
= 0.1),
hnsw = list(M = 25, ef_c = 200, ef_s = 200, grain_size = 1, byrow = TRUE),
lsh = list(bucket_size = 500, hash_width = 10, num_probes = 0, projections = 10, tables
= 30),
kd = list(algorithm = "dual_tree", epsilon = 0, leaf_size = 20, random_basis = FALSE,
rho = 0.7, tau = 0, tree_type = "kd"),
annoy = list(n_trees = 250, build_on_disk = FALSE)
)
Arguments
- sparse
whether sparse data should be used as an input for algorithms,
- k_search
number of neighbours to search,
- nnd
list of parameters for
rnndescent::rnnd_build()
andrnndescent::rnnd_query()
,- hnsw
list of parameters for
RcppHNSW::hnsw_build()
andRcppHNSW::hnsw_search()
,- lsh
list of parameters for
mlpack::lsh()
function,- kd
list of kd parameters for
mlpack::knn()
function,- annoy
list of parameters for RcppAnnoy package.